Hybrid ARDL-MIDAS-Transformer time-series regressions for multi-topic crypto market sentiment driven by price and technology factors
نویسندگان
چکیده
Abstract This paper develops a novel hybrid Autoregressive Distributed Lag Mixed Data Sampling (ARDL-MIDAS) model that integrates both deep neural network multi-head attention Transformer mechanisms, and number of covariates, including sophisticated stochastic text time-series features, into mixed-frequency regression with long memory structure. In doing so, we demonstrate how the resulting class ARDL-MIDAS-Transformer models allows one to maintain interpretability whilst exploiting architectures. The latter may be used for higher-order interaction analysis, or, as in our use case, design Instrumental Variables reduce bias estimation infinite lag ARDL-MIDAS model. Our approach produces an accurate, interpretable forecasting framework forecast end-of-day sentiment intra-daily, readily attainable regressors. this regard, conduct statistical analysis on mixed data frequencies discover study relationships between from custom framework, alternative popular extraction frameworks (BERT VADER), technology factors, well investigate role price discovery has retail cryptocurrency investors’ (crypto sentiment). is interesting modelling challenge it involves working which response process, are observed at different time scales. Specifically, detailed real-data conducted where explore relationship daily crypto market (of positive, negative neutral polarity) intra-daily (hourly) log-return dynamics markets. indices constructed variety “topics” news sources produced collection capturing polarity signals each “topic”, namely particular or asset. Different methods developed context, utilised proposed framework. Furthermore, factors introduced capture effects, such hash rate important aspect money supply relating mining new assets, block hashing transaction verification. Throughout real study, provide guidance insights combine—in transparent, non-black-box way—covariates obtained resolutions, understand arising these potentially under presence structure, and, finally, successfully leverage applications. demonstrated superior performance alternatives in-sample application data.
منابع مشابه
Cointegrating MiDaS Regressions and a MiDaS Test
This paper introduces cointegrating mixed data sampling (CoMiDaS) regressions, generalizing nonlinear MiDaS regressions in the extant literature. Under a linear mixed-frequency data-generating process, MiDaS regressions provide a parsimoniously parameterized nonlinear alternative when the linear forecasting model is over-parameterized and may be infeasible. In spite of potential correlation of ...
متن کاملNonlinear cointegrating regressions with nonstationary time series
This paper develops an asymptotic theory for a non-linear parametric co-integrating regression model. We establish a general framework for weak consistency that is easy to apply for various non-stationary time series, including partial sum of linear process and Harris recurrent Markov chain. We provide a limit distribution for the nonlinear least square estimator which significantly extends the...
متن کاملSentiment Analysis on Twitter to Improve Time Series Contextual Anomaly Detection for Detecting Stock Market Manipulation
In this paper, We propose a formalized method to improve the performance of Contextual Anomaly Detection (CAD) for detecting stock market manipulation using Big Data techniques. The method aims to improve the CAD algorithm by capturing the expected behaviour of stocks through sentiment analysis of tweets about stocks. The extracted insights are aggregated per day for each stock and transformed ...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولApplication of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market
Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Digital finance
سال: 2023
ISSN: ['2524-6984', '2524-6186']
DOI: https://doi.org/10.1007/s42521-023-00079-9